Pellen ekuazioaren bateragarritasuna

Pell-en ekuazioa bateragarria da.

Pellen ekuazioa: x 2 p y 2 = 1 {\displaystyle x^{2}-py^{2}=1} , bateragarria da, p {\displaystyle p} edozein zenbaki arrunt eta ez karratu izanik. Pell-en ekuazioak beti onartzen du ebazpen neutroa: x = 1 , y = 0 {\displaystyle x=1,y=0} , horregatik bateragarria dela diogunean, neutroa ez den ebazpen baten existentziaz mintzo gara.

Peter Gustav Lejeune Dirichlet (1805-1859)

Pell-en ekuazioa bateragarria dela frogatuko da, p {\displaystyle p} edozein zenbaki arrunt eta ez karratu izanik. Honetarako Dirichlet-en bidea jarraituz: Lema bat, korolario bat eta proposizio bat frogatuz.

Oharra: Notazioetan, [ a , b ] {\displaystyle [a,b]} bitartea erabiliko da, [ a , b ] Z {\displaystyle [a,b]\cap \mathbb {Z} } multzoa adierazteko, eta [ x ] {\displaystyle [x]} , berriz, x {\displaystyle x} -ren zati osoa adierazteko.

{\displaystyle \aleph } , aleph zero sinboloak infinitu kontagarria adierazten du, eta | A | {\displaystyle \left\vert A\right\vert } -k, A {\displaystyle A} multzoaren elementu kopurua.

Zenbaki arrazionalak: Q = { p q : p Z , q N } {\displaystyle \mathbb {Q} =\{{\frac {p}{q}}:p\in \mathbb {Z} ,q\in \mathbb {N} \}}

Lema

α R {\displaystyle \alpha \in \mathbb {R} } emanik, n N {\displaystyle \forall n\in \mathbb {N} } -rentzat p q Q {\displaystyle \exists {\frac {p}{q}}\in \mathbb {Q} } non | α p q | < 1 q n {\displaystyle \left\vert \alpha -{\frac {p}{q}}\right\vert <{\frac {1}{q\cdot n}}} eta q [ 1 , n ] {\displaystyle q\in [1,n]} .

Froga.

p q {\displaystyle {\frac {p}{q}}} zenbaki arrazionala, p Z {\displaystyle {p}\in \mathbb {Z} } eta q N {\displaystyle {q}\in \mathbb {N} } suposatzen da orokortasuna galdu gabe.

n N {\displaystyle {n}\in \mathbb {N} } emanik, ondorengo segida eraikiko da: x j = j α [ j α ] {\displaystyle x_{j}=j\alpha -[j\alpha ]} non j [ 0 , n ] {\displaystyle j\in [0,n]} .

x j = j α [ j α ] [ 0 , 1 ) = k = 0 n 1 [ k n , k + 1 n ) {\displaystyle x_{j}=j\alpha -[j\alpha ]\in [0,1{\bigr )}=\bigcup _{k=0}^{n-1}[{\frac {k}{n}},{\frac {k+1}{n}}{\bigr )}} , j [ 0 , n ] {\displaystyle \forall j\in [0,n]} -rentzat.

Honela n + 1 {\displaystyle n+1} zenbaki , n {\displaystyle n} bitarte disjuntutan banatu dira, eta usategi printzipioa erabiliz, existitzen da bitarte bat, gutsienez bi zenbaki bere baitan dituena.

r , s [ 0 , n ] {\displaystyle \exists {r},{s}\in [0,n]} , eta r < s {\displaystyle {r}<{s}} non | x r x s | < 1 n {\displaystyle \left\vert x_{r}-x_{s}\right\vert <{\frac {1}{n}}}

| x r x s | = | r α s α ( [ r α ] [ s α ] ) | = {\displaystyle \left\vert x_{r}-x_{s}\right\vert =\left\vert r\alpha -s\alpha -([r\alpha ]-[s\alpha ])\right\vert =} ( r s ) | α [ r α ] [ s α ] r s | < 1 n {\displaystyle (r-s)\left\vert \alpha -{\frac {[r\alpha ]-[s\alpha ]}{r-s}}\right\vert <{\frac {1}{n}}}

r , s [ 0 , n ] {\displaystyle {r},{s}\in [0,n]} , eta r < s {\displaystyle {r}<{s}} 1 r s n {\displaystyle \Rightarrow 1\leq r-s\leq n} . Honela q = r s {\displaystyle q=r-s} eta p = [ r α ] [ s α ] {\displaystyle p=[r\alpha ]-[s\alpha ]} aukeratuz.

p q Q {\displaystyle \exists {\frac {p}{q}}\in Q} non | α p q | < 1 q n {\displaystyle \left\vert \alpha -{\frac {p}{q}}\right\vert <{\frac {1}{q\cdot n}}} eta q [ 1 , n ] {\displaystyle q\in [1,n]} .

Korolarioa (Dirichleten teorema)

α R Q {\displaystyle \alpha \in \mathbb {R} -\mathbb {Q} } eta = { p q Q : | α p q | < 1 q 2 } {\displaystyle \Re =\left\{{\frac {p}{q}}\in \mathbb {Q} :\left\vert \alpha -{\frac {p}{q}}\right\vert <{\frac {1}{q^{2}}}\right\}} | | = {\displaystyle \Rightarrow \left\vert \Re \right\vert =\aleph }

Froga

p = [ α ] , q = 1 {\displaystyle p=\left[\alpha \right],q=1} , hartuaz | α [ α ] 1 | < 1 1 2 [ α ] {\displaystyle \left\vert \alpha -{\frac {[\alpha ]}{1}}\right\vert <{\frac {1}{1^{2}}}\Rightarrow [\alpha ]\in \Re } . Ondorioz {\displaystyle \Re \neq \emptyset } .

Absurdura bideratuz suposa bedi, | | < {\displaystyle \left\vert \Re \right\vert <\aleph } dela (finitua).

| | < ϵ = M i n { | α r | : r } {\displaystyle \left\vert \Re \right\vert <\aleph \Rightarrow \exists \epsilon =Min\left\{\left\vert \alpha -r\right\vert :r\in \Re \right\}}

Zenbaki arrazionalen arkimedesen ezaugarriagatik: n N : 1 n < ϵ {\displaystyle \exists n\in \mathbb {N} :{\frac {1}{n}}<\epsilon } .

α {\displaystyle \alpha } eta n {\displaystyle n} zenbakiei, aurreko Lema aplikatuz: p q Q : | α p q | < 1 q n ; q [ 1 , n ] {\displaystyle \exists {\frac {p}{q}}\in \mathbb {Q} :\left\vert \alpha -{\frac {p}{q}}\right\vert <{\frac {1}{q\cdot n}};q\in [1,n]}

Ondorioz, | α p q | < 1 q n 1 n < ϵ p q {\displaystyle \left\vert \alpha -{\frac {p}{q}}\right\vert <{\frac {1}{q\cdot n}}\leq {\frac {1}{n}}<\epsilon \Rightarrow {\frac {p}{q}}\not \in \Re }

Eta bestalde | α p q | < 1 q n 1 q 2 p q {\displaystyle \left\vert \alpha -{\frac {p}{q}}\right\vert <{\frac {1}{q\cdot n}}\leq {\frac {1}{q^{2}}}\Rightarrow {\frac {p}{q}}\in \Re }

Absurdua denez ezinezkoa da {\displaystyle \Re } finitua izatea | | = {\displaystyle \Rightarrow \left\vert \Re \right\vert =\aleph }

Proposizioa

p {\displaystyle p} zenbaki arrunt eta ez karratua bada, Pell-en ekuazioak: x 2 p y 2 = 1 {\displaystyle x^{2}-py^{2}=1} , badu ebazpen ez neutro bat.

Froga

p {\displaystyle p} zenbaki arrunt eta ez karratua bada, p {\displaystyle {\sqrt {p}}} ez da zenbaki arrazionala: p R Q {\displaystyle {\sqrt {p}}\in \mathbb {R} -\mathbb {Q} } .

α = p R Q {\displaystyle \alpha ={\sqrt {p}}\in \mathbb {R} -\mathbb {Q} } zenbakiari aurreko korolarioa aplikatuz, | | = {\displaystyle \left\vert \Re \right\vert =\aleph } , zeinetan:

= { x y Q : | p x y | < 1 y 2 } {\displaystyle \Re =\left\{{\frac {x}{y}}\in \mathbb {Q} :\left\vert {\sqrt {p}}-{\frac {x}{y}}\right\vert <{\frac {1}{y^{2}}}\right\}} .

  • Ondorengo emaitza frogatuko da hiru pausotan:

m Z ; | m | < 1 + 2 p {\displaystyle \exists m\in Z;\left\vert m\right\vert <1+2{\sqrt {p}}} non | A m | = {\displaystyle \left\vert {\mathcal {A_{m}}}\right\vert =\aleph } .

Zeinetan A m = { ( x , y ) N × N : | x 2 p y 2 | = m } {\displaystyle {\mathcal {A}}_{m}=\{(x,y)\in N\times N:\left\vert x^{2}-py^{2}\right\vert =m\}} multzoa den.

Bat: | 1 | = {\displaystyle \left\vert \Re _{1}\right\vert =\aleph } , forgatuko da, zeinetan 1 = { x y Q : | x 2 y 2 p | < 1 + 2 p } {\displaystyle \Re _{1}=\left\{{\frac {x}{y}}\in \mathbb {Q} :\left\vert x^{2}-y^{2}p\right\vert <1+2{\sqrt {p}}\right\}} . Ondorengo desberdintzak betetzen dituzte {\displaystyle \Re } multzoko zatikiek: x y {\displaystyle {\frac {x}{y}}\in \Re } emanik: | p x y | < 1 y 2 | y p x | < 1 y {\displaystyle \left\vert {\sqrt {p}}-{\frac {x}{y}}\right\vert <{\frac {1}{y^{2}}}\Leftrightarrow \left\vert y{\sqrt {p}}-x\right\vert <{\frac {1}{y}}} , eta desberdintza triangeluarra erabiliz:

| y p + x | = | 2 y p + x y p | {\displaystyle \left\vert y{\sqrt {p}}+x\right\vert =\left\vert 2y{\sqrt {p}}+x-y{\sqrt {p}}\right\vert \leq } 2 y p + | x y p | < 1 y + 2 y p {\displaystyle 2y{\sqrt {p}}+\left\vert x-y{\sqrt {p}}\right\vert <{\frac {1}{y}}+2y{\sqrt {p}}} .

Bi zenbakien biderketa eginez:

| x y p | | x + y p | = | x 2 p y 2 | {\displaystyle \left\vert x-y{\sqrt {p}}\right\vert \cdot \left\vert x+y{\sqrt {p}}\right\vert =\left\vert x^{2}-py^{2}\right\vert } < 1 y ( 1 y + 2 y p ) = 1 y 2 + 2 p 1 + 2 p {\displaystyle <{\frac {1}{y}}\cdot ({\frac {1}{y}}+2y{\sqrt {p}})={\frac {1}{y^{2}}}+2{\sqrt {p}}\leq 1+2{\sqrt {p}}} . Honela: x y x y 1 {\displaystyle {\frac {x}{y}}\in \Re \Rightarrow {\frac {x}{y}}\in \Re _{1}} . Eta emaitza frogatzen da: 1 ; | | = | 1 | = {\displaystyle \Re \subset \Re _{1};|\Re |=\aleph \Rightarrow |\Re _{1}|=\aleph } .

Bi | A | = {\displaystyle \left\vert {\mathcal {A}}\right\vert =\aleph } zeinetan A = { ( x , y ) N × N : | x 2 p y 2 | < 1 + 2 p } {\displaystyle {\mathcal {A}}=\{(x,y)\in \mathbb {N} \times \mathbb {N} :\left\vert x^{2}-py^{2}\right\vert <1+2{\sqrt {p}}\}} .

Ondorengo aplikazioa sortuko da: f : A 1 {\displaystyle f:{\mathcal {A}}\rightarrow \Re _{1}} , zeinetan f ( x , y ) = x y {\displaystyle f(x,y)={\frac {x}{y}}} .

Erraz frogatzen da ondo definitutako aplikazioa dela, eta supraiektiboa dela.

f {\displaystyle f} supraiektiboa | 1 | | A | {\displaystyle \Rightarrow \left\vert \Re _{1}\right\vert \leq \left\vert {\mathcal {A}}\right\vert } .

1 {\displaystyle \Re _{1}} infinitua denez, A {\displaystyle {\mathcal {A}}} ere infinitua da: | 1 | = | A | = {\displaystyle \left\vert \Re _{1}\right\vert =\aleph \Rightarrow |{\mathcal {A}}|=\aleph } .

Hiru: m Z ; | m | < 1 + 2 p {\displaystyle \exists m\in Z;\left\vert m\right\vert <1+2{\sqrt {p}}} non | A m | = {\displaystyle \left\vert {\mathcal {A}}_{m}\right\vert =\aleph } .

Zeinetan A m = { ( x , y ) N × N : | x 2 p y 2 | = m } {\displaystyle {\mathcal {A}}_{m}=\{(x,y)\in \mathbb {N} \times \mathbb {N} :\left\vert x^{2}-py^{2}\right\vert =m\}} multzoa den.

Multzoen arteko ondorengo berdintza betetzen da:

A = | m | < 1 + 2 p A m {\displaystyle {\mathcal {A}}=\bigcup _{|m|<1+2{\sqrt {p}}}{\mathcal {A}}_{m}} .

Absurdura bideratuz m Z ; | m | < 1 + 2 p | A m | < {\displaystyle \forall m\in Z;\left\vert m\right\vert <1+2{\sqrt {p}}\Rightarrow \left\vert {\mathcal {A}}_{m}\right\vert <\aleph } suposatzen bada.

| A | = | | m | < 1 + 2 p A m | | m | < 1 + 2 p | A m | < {\displaystyle |{\mathcal {A}}|=|\bigcup _{|m|<1+2{\sqrt {p}}}{\mathcal {A}}_{m}|\leq \sum _{|m|<1+2{\sqrt {p}}}|{\mathcal {A}}_{m}|<\aleph } . Multzo finituen batura finitua finitua izateagatik.

Honela, | A | < {\displaystyle \left\vert {\mathcal {A}}\right\vert <\aleph } ondorioztatu da, zeinak | A | = {\displaystyle \left\vert {\mathcal {A}}\right\vert =\aleph } , ukatzen duen: absurdua.

Existitzen da beraz A m {\displaystyle {\mathcal {A}}_{m}} multzoren bat infinitu elementu dituena.

  • Behin m Z {\displaystyle m\in Z} aukeratu dugularik ( | m | < 1 + 2 p {\displaystyle \left\vert m\right\vert <1+2{\sqrt {p}}} ) eta | A m | = {\displaystyle \left\vert {\mathcal {A}}_{m}\right\vert =\aleph } , A m {\displaystyle {\mathcal {A}}_{m}} multzoan Pellen ekuazioa betetzen duen ebazpen ez neutro bat existitzen dela frogatuko da. Ondorengo atalak frogatuz:

Bat: Ondorengo emaitza frogatuko da:

( x 1 , y 1 ) , ( x 2 , y 2 ) A m {\displaystyle \exists (x_{1},y_{1}),(x_{2},y_{2})\in {\mathcal {A}}_{m}} : ( x 1 , y 1 ) ( x 2 , y 2 ) {\displaystyle (x_{1},y_{1})\neq (x_{2},y_{2})} , x 1 x 2 ( mod | m | ) ; y 1 y 2 ( mod | m | ) {\displaystyle x_{1}\equiv x_{2}{\pmod {|m|}};y_{1}\equiv y_{2}{\pmod {|m|}}} .

f : A m Z | m | × Z | m | {\displaystyle f:{\mathcal {A}}_{m}\rightarrow Z_{|m|}\times Z_{|m|}} , aplikazioa eraikiko da zeinetan f ( x , y ) = ( x + | m | Z , y + | m | Z ) {\displaystyle f(x,y)=(x+\left\vert m\right\vert Z,y+\left\vert m\right\vert Z)} , x + | m | Z Z | m | = { 0 ¯ , 1 ¯ , . . . , m 1 ¯ } {\displaystyle x+\left\vert m\right\vert Z\in Z_{|m|}=\{{{\bar {0}},{\bar {1}},...,{\overline {m-1}}}\}} eraztuneko elementuak izanik.

A m {\displaystyle {\mathcal {A}}_{m}} Multzoa infinitua izateagatik eta Z | m | × Z | m | {\displaystyle Z_{|m|}\times Z_{|m|}} , multzoa berriz finitua, irudi berdineko bi elementu desberdin existitzen direla ondoriozta daiteke ( zentzu zorrotzean infinitu ere exititu arren). | A m | = {\displaystyle \left\vert {\mathcal {A}}_{m}\right\vert =\aleph } , eta | Z | m | × Z | m | | = m 2 {\displaystyle \left\vert Z_{|m|}\times Z_{|m|}\right\vert =m^{2}\Rightarrow } ( x 1 , y 1 ) , ( x 2 , y 2 ) A m {\displaystyle \exists (x_{1},y_{1}),(x_{2},y_{2})\in {\mathcal {A}}_{m}} .

f ( x 1 , y 1 ) = f ( x 2 , y 2 ) {\displaystyle f(x_{1},y_{1})=f(x_{2},y_{2})} eta ( x 1 , y 1 ) ( x 2 , y 2 ) {\displaystyle (x_{1},y_{1})\neq (x_{2},y_{2})} . ( x 1 , y 1 ) , ( x 2 , y 2 ) A m {\displaystyle \exists (x_{1},y_{1}),(x_{2},y_{2})\in {\mathcal {A}}_{m}} non

( x 1 + | m | Z , y 1 + | m | Z ) = ( x 2 + | m | Z , y 2 + | m | Z ) {\displaystyle (x_{1}+\left\vert m\right\vert Z,y_{1}+\left\vert m\right\vert Z)=(x_{2}+\left\vert m\right\vert Z,y_{2}+\left\vert m\right\vert Z)} , honela ( x 1 , y 1 ) , ( x 2 , y 2 ) A m {\displaystyle \exists (x_{1},y_{1}),(x_{2},y_{2})\in {\mathcal {A}}_{m}} :

( x 1 , y 1 ) ( x 2 , y 2 ) {\displaystyle (x_{1},y_{1})\neq (x_{2},y_{2})} eta x 1 x 2 ( mod | m | ) ; y 1 y 2 ( mod | m | ) {\displaystyle x_{1}\equiv x_{2}{\pmod {|m|}};y_{1}\equiv y_{2}{\pmod {|m|}}} .

Bi: Ondorengo erlazioa frogatuko da: z k h ( x 1 , y 1 ) = z k h ( x 2 , y 2 ) = d {\displaystyle {zkh}(x_{1},y_{1})={zkh}(x_{2},y_{2})=d} .

d / z k h ( x 1 , y 1 ) d / z k h ( x 2 , y 2 ) {\displaystyle d/{zkh}(x_{1},y_{1})\Rightarrow d/{zkh}(x_{2},y_{2})} frogatuko da, lehenik. d / z k h ( x 1 , y 1 ) d / x 1 ; d / y 1 { d 2 / x 1 2 ; d 2 / y 1 2 x 1 2 p y 1 2 = m d 2 / m {\displaystyle d/{zkh}(x_{1},y_{1})\Rightarrow d/x_{1};d/y_{1}\Rightarrow {\begin{cases}d^{2}/x_{1}^{2};d^{2}/y_{1}^{2}\\x_{1}^{2}-py_{1}^{2}=m\end{cases}}\Rightarrow d^{2}/m} { { d / x 1 ; d / m x 1 x 2 ( mod | m | ) d / x 2 { d / y 1 ; d / m y 1 y 2 ( mod | m | ) d / y 2 d / z k t ( x 2 , y 2 ) {\displaystyle {\begin{cases}{\begin{cases}d/x1;d/m\\x_{1}\equiv x_{2}{\pmod {|m|}}\end{cases}}\Rightarrow d/x_{2}\\{\begin{cases}d/y_{1};d/m\\y_{1}\equiv y_{2}{\pmod {|m|}}\end{cases}}\Rightarrow d/y_{2}\end{cases}}\Rightarrow d/{zkt}(x_{2},y_{2})} .

Eta modu berean argudiatzen da: d / z k h ( x 2 , y 2 ) d / z k h ( x 1 , y 1 ) {\displaystyle d/{zkh}(x_{2},y_{2})\Rightarrow d/{zkh}(x_{1},y_{1})} .

Ondorioz: z k h ( x 1 , y 1 ) = z k h ( x 2 , y 2 ) = d {\displaystyle {zkh}(x_{1},y_{1})={zkh}(x_{2},y_{2})=d} .

Hiru: ( x 1 x 2 p y 1 y 2 , x 1 y 2 x 2 y 1 ) A m {\displaystyle (x_{1}x_{2}-py_{1}y_{2},x_{1}y_{2}-x_{2}y_{1})\in {\mathcal {A}}_{m}} frogatuko da.

( x 1 , y 1 ) , ( x 2 , y 2 ) A m ( x 1 x 2 p y 1 y 2 , x 1 y 2 x 2 y 1 ) A m {\displaystyle (x_{1},y_{1}),(x_{2},y_{2})\in {\mathcal {A}}_{m}\Rightarrow (x_{1}x_{2}-py_{1}y_{2},x_{1}y_{2}-x_{2}y_{1})\in {\mathcal {A}}_{m}} .

( x 1 2 p y 1 2 ) ( x 2 2 p y 2 2 ) = ( x 1 x 2 p y 1 y 2 ) 2 p ( x 1 y 2 x 2 y 1 ) 2 = m 2 {\displaystyle (x_{1}^{2}-py_{1}^{2})(x_{2}^{2}-py_{2}^{2})=(x_{1}x_{2}-py_{1}y_{2})^{2}-p(x_{1}y_{2}-x_{2}y_{1})^{2}=m^{2}} .

Lau: x 1 y 2 x 2 y 1 0 ( mod | m | ) {\displaystyle x_{1}y_{2}-x_{2}y_{1}\equiv 0{\pmod {|m|}}} eta x 1 x 2 p y 1 y 2 0 ( mod | m | ) {\displaystyle x_{1}x_{2}-py_{1}y_{2}\equiv 0{\pmod {|m|}}} frogatuko da.

{ x 2 x 1 0 ( mod | m | ) y 2 ( x 2 x 1 ) 0 ( mod | m | ) y 2 y 1 0 ( mod | m | ) x 2 ( y 2 y 1 ) 0 ( mod | m | ) {\displaystyle {\begin{cases}x_{2}-x_{1}\equiv 0{\pmod {\left\vert m\right\vert }}\Rightarrow y_{2}(x_{2}-x_{1})\equiv 0{\pmod {\left\vert m\right\vert }}\\y_{2}-y_{1}\equiv 0{\pmod {\left\vert m\right\vert }}\Rightarrow x_{2}(y_{2}-y_{1})\equiv 0{\pmod {\left\vert m\right\vert }}\end{cases}}}

Kenketa eginez: x 1 y 2 x 2 y 1 0 ( mod | m | ) {\displaystyle x_{1}y_{2}-x_{2}y_{1}\equiv 0{\pmod {|m|}}}

x 1 y 2 x 2 y 1 0 ( mod | m | ) ( x 1 y 2 x 2 y 1 ) 2 0 ( mod m 2 ) {\displaystyle x_{1}y_{2}-x_{2}y_{1}\equiv 0{\pmod {|m|}}\Rightarrow (x_{1}y_{2}-x_{2}y_{1})^{2}\equiv 0{\pmod {m^{2}}}} { ( x 1 x 2 p y 1 y 2 ) 2 p ( x 1 y 2 x 2 y 1 ) 2 = m 2 ( x 1 y 2 x 2 y 1 ) 2 0 ( mod m 2 ) ( x 1 x 2 p y 1 y 2 ) 2 0 ( mod m 2 ) {\displaystyle {\begin{cases}(x_{1}x_{2}-py_{1}y_{2})^{2}-p(x_{1}y_{2}-x_{2}y_{1})^{2}=m^{2}\\(x_{1}y_{2}-x_{2}y_{1})^{2}\equiv 0{\pmod {m^{2}}}\end{cases}}\Rightarrow (x_{1}x_{2}-py_{1}y_{2})^{2}\equiv 0{\pmod {m^{2}}}}
( x 1 x 2 p y 1 y 2 ) 2 0 ( mod m 2 ) x 1 x 2 p y 1 y 2 0 ( mod | m | ) {\displaystyle (x_{1}x_{2}-py_{1}y_{2})^{2}\equiv 0{\pmod {m^{2}}}\Rightarrow x_{1}x_{2}-py_{1}y_{2}\equiv 0{\pmod {|m|}}} .

x 1 x 2 p y 1 y 2 0 ( mod | m | ) {\displaystyle x_{1}x_{2}-py_{1}y_{2}\equiv 0{\pmod {|m|}}} .

Bost: Pellen ekuazioaren ebazpen bat existitzen dela frogatuko da.

( u , v ) Z × Z : u 2 p v 2 = 1 {\displaystyle \exists (u,v)\in \mathbb {Z} \times \mathbb {Z} :u^{2}-pv^{2}=1}

{ x 1 y 2 x 2 y 1 0 ( mod | m | ) x 1 x 2 p y 1 y 2 0 ( mod | m | ) u , v Z {\displaystyle {\begin{cases}x_{1}y_{2}-x_{2}y_{1}\equiv 0{\pmod {|m|}}\\x_{1}x_{2}-py_{1}y_{2}\equiv 0{\pmod {|m|}}\end{cases}}\Rightarrow \exists u,v\in \mathbb {Z} } non { x 1 y 2 x 2 y 1 = v m x 1 x 2 p y 1 y 2 = u m {\displaystyle {\begin{cases}x_{1}y_{2}-x_{2}y_{1}=vm\\x_{1}x_{2}-py_{1}y_{2}=um\end{cases}}}

( x 1 2 p y 1 2 ) ( x 2 2 p y 2 2 ) = ( x 1 x 2 p y 1 y 2 ) 2 p ( x 1 y 2 x 2 y 1 ) 2 = m 2 {\displaystyle (x_{1}^{2}-py_{1}^{2})(x_{2}^{2}-py_{2}^{2})=(x_{1}x_{2}-py_{1}y_{2})^{2}-p(x_{1}y_{2}-x_{2}y_{1})^{2}=m^{2}} .

( x 1 x 2 p y 1 y 2 ) 2 p ( x 1 y 2 x 2 y 1 ) 2 = m 2 ( u m ) 2 p ( v m ) 2 = m 2 u 2 p v 2 = 1 {\displaystyle (x_{1}x_{2}-py_{1}y_{2})^{2}-p(x_{1}y_{2}-x_{2}y_{1})^{2}=m^{2}\Leftrightarrow (um)^{2}-p(vm)^{2}=m^{2}\Leftrightarrow u^{2}-pv^{2}=1}

Ondorioz Pell ekuazioaren ebazpen bat existitzen da: x = u , y = v {\displaystyle x=u,y=v} .

Sei: Ebazpena ez dela neutroa frogatuko da: v 0 {\displaystyle v\neq 0} .

Absurdura bideratuz, v = 0 {\displaystyle v=0} baldin bada: x 1 y 2 = x 2 y 1 {\displaystyle x_{1}y_{2}=x_{2}y_{1}} .

z k t ( x 1 , y 1 ) = z k t ( x 2 , y 2 ) = d {\displaystyle {zkt}(x_{1},y_{1})={zkt}(x_{2},y_{2})=d} denez ondorengo zenbakiak sortuko dira:

x 1 = d x 1 , x 2 = d x 2 , y 1 = d y 1 , y 2 = d y 2 {\displaystyle x_{1}=dx'_{1},x_{2}=dx'_{2},y_{1}=dy'_{1},y_{2}=dy'_{2}} .

Zenbaki hauen zatitzaile komunetako handiena:

z k t ( x 1 , y 1 ) = z k t ( x 2 , y 2 ) = d z k t ( x 1 , y 1 ) = z k t ( x 2 , y 2 ) = 1 {\displaystyle {zkt}(x_{1},y_{1})={zkt}(x_{2},y_{2})=d\Rightarrow {zkt}(x'_{1},y'_{1})={zkt}(x'_{2},y'_{2})=1} .

Eta: x 1 y 2 = x 2 y 1 x 1 y 2 = x 2 y 1 {\displaystyle x_{1}y_{2}=x_{2}y_{1}\Rightarrow x'_{1}y'_{2}=x'_{2}y'_{1}}

{ { x 1 y 2 = x 2 y 1 z k t ( x 1 , y 1 ) = 1 y 2 y 1 = x 2 x 1 Z { x 1 y 2 = x 2 y 1 z k t ( x 2 , y 2 ) = 1 x 1 x 2 = y 1 y 2 Z {\displaystyle {\begin{cases}{\begin{cases}x'_{1}y'_{2}=x'_{2}y'_{1}\\{zkt}(x'_{1},y'_{1})=1\end{cases}}\Rightarrow {\frac {y'_{2}}{y'_{1}}}={\frac {x'_{2}}{x'_{1}}}\in \mathbb {Z} \\{\begin{cases}x'_{1}y'_{2}=x'_{2}y'_{1}\\{zkt}(x'_{2},y'_{2})=1\end{cases}}\Rightarrow {\frac {x'_{1}}{x'_{2}}}={\frac {y'_{1}}{y'_{2}}}\in \mathbb {Z} \end{cases}}} .

Zenbaki oso bat bere alderantzizkoaren berdina bada, zenbaki oso hori: 1 edo -1 da.

x 2 x 1 = 1 x 2 = x 1 {\displaystyle {\frac {x'_{2}}{x'_{1}}}=-1\Rightarrow x_{2}=-x_{1}} bada, bietako bat negatiboa da, eta aukeraketa x + | m | Z Z | m | = { 0 ¯ , 1 ¯ , . . . , m 1 ¯ } {\displaystyle x+\left\vert m\right\vert Z\in Z_{|m|}=\{{{\bar {0}},{\bar {1}},...,{\overline {m-1}}}\}} multzotik egin da ezinezkoa.

x 2 x 1 = 1 {\displaystyle {\frac {x'_{2}}{x'_{1}}}=1} , bada ( x 1 , y 1 ) = ( x 2 , y 2 ) ( x 1 , y 1 ) = ( x 2 , y 2 ) {\displaystyle (x'_{1},y'_{1})=(x'_{2},y'_{2})\Rightarrow (x_{1},y_{1})=(x_{2},y_{2})} . Zeinak osagaien aukeraketa ukatzen duen, ezinezkoa.

Ondorioz: v 0 {\displaystyle v\neq 0} .