Tor (pierwiastek)

Tor
aktyn ← tor → protaktyn
Ce

Th

Uqn
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
90
Th
Wygląd
srebrzystobiały
próbka toru o masie 0,1 g w ampułce wypełnionej argonem
próbka toru o masie 0,1 g w ampułce wypełnionej argonem
Widmo emisyjne toru
Widmo emisyjne toru
Ogólne informacje
Nazwa, symbol, l.a.

tor, Th, 90
(łac. thorium)

Grupa, okres, blok

–, 7, f

Stopień utlenienia

IV

Właściwości metaliczne

aktynowiec

Właściwości tlenków

słabo zasadowe

Masa atomowa

232,04 ± 0,01[a][2]

Stan skupienia

stały

Gęstość

11724 kg/m³

Temperatura topnienia

1750 °C[1]

Temperatura wrzenia

4788 °C[1]

Numer CAS

7440-29-1

PubChem

23960

Właściwości atomowe
Promień
atomowy


180 pm

Konfiguracja elektronowa

[Rn]6d27s2

Zapełnienie powłok

2, 8, 18, 32, 18, 10, 2
(wizualizacja powłok)

Elektroujemność
• w skali Paulinga
• w skali Allreda


1,3
1,1

Potencjały jonizacyjne

I 587 kJ/mol
II 1110 kJ/mol
III 1930 kJ/mol

Właściwości fizyczne
Ciepło parowania

514,4 kJ/mol

Ciepło topnienia

16,1 kJ/mol

Konduktywność

6,53×106 S/m

Ciepło właściwe

120 J/(kg·K)

Przewodność cieplna

54 W/(m·K)

Układ krystalograficzny

regularny ściennie centrowany

Twardość
• w skali Mohsa


3,0

Prędkość dźwięku

2490 m/s (293,15 K)

Objętość molowa

19,80×10−6 m³/mol

Najbardziej stabilne izotopy
izotop wyst. o.p.r. s.r. e.r. MeV p.r.
227Th ślad. 18,7 dni α 223Ra
228Th ślad. 1,9116 roku α 5,520 224Ra
229Th {syn.} 7340 lat α 5,168 225Ra
230Th ślad. 75380 lat α 4,770 226Ra
231Th ślad. 25,52 h β 231Pa
232Th 100% 1,405×1010 lat α 4,083 228Ra
233Th {syn.} 22,3 min β 1,245 233Pa
234Th ślad. 24,1 dni β 0,270 234Pa
Niebezpieczeństwa
Globalnie zharmonizowany system
klasyfikacji i oznakowania chemikaliów
Wiarygodne źródła oznakowania tej substancji
według kryteriów GHS są niedostępne.
Jeżeli nie podano inaczej, dane dotyczą
warunków normalnych (0 °C, 1013,25 hPa)
Multimedia w Wikimedia Commons
Hasło w Wikisłowniku

Tor (Th, łac. thorium) – pierwiastek chemiczny z grupy aktynowców w układzie okresowym. Nazwany od imienia jednego z bogów nordyckich, Thora.

Charakterystyka

Tor jest pierwiastkiem promieniotwórczym i nie ma żadnego trwałego izotopu. Jego najtrwalszy i praktycznie jedyny izotop naturalny to 232
Th
o czasie połowicznego rozpadu ok. 14 mld lat. Ulega on rozpadowi α do 228
Ra
, dając początek tzw. szeregowi torowemu rozpadów promieniotwórczych. Ze względu na powolny rozpad, radioaktywność produktów wykorzystujących oczyszczony tor jest niewielka.

Jest błyszczącym i kowalnym metalem. Powoli reaguje z mocnymi kwasami nieorganicznymi, znacznie szybciej z wodą królewską. Występuje w związkach na IV stopniu utlenienia i swoimi właściwościami przypomina cyrkon, tytan oraz lantanowce. W roztworach o pH < 1 istnieją bezbarwne jony Th4+
. Tworzy jeden tlenek: biały ThO
2
[3].

Występowanie

Tor występuje w skorupie ziemskiej w ilości 12 ppm, czyli około sześciokrotnie częściej niż uran. Jest najpowszechniejszym na ziemi pierwiastkiem bez trwałych izotopów. Najważniejszym minerałem toru jest monacyt (Ca, La, Nd,Th)PO
4
. Tor występujący naturalnie składa się praktycznie wyłącznie z izotopu 232
Th
. W śladowych ilościach występuje jeszcze 5 izotopów toru, jako krótko żyjące produkty przemian jądrowych naturalnych szeregów promieniotwórczych. Noszą one nazwy zwyczajowe: 227
Th
radioaktyn (RdAc)[4], 228
Th
radiotor (RaTh)[5], 230
Th
jon (Io)[6], 231
Th
uran Y (UY)[7], 234
Th
uran X1 (UX1)[8]. Spośród nich izotop 230
Th
, jon (Io) był uważany przez pewien czas za odrębny pierwiastek, łac. ionium[9].

Odkrycie

Tor został odkryty w roku 1829 przez szwedzkiego chemika Jönsa Jacoba Berzeliusa[10].

Zastosowanie

Tor jest ważnym dodatkiem stopowym, zwiększającym wysokotemperaturową wytrzymałość metali (na przykład magnezu). Stosuje się go również w czujnikach fotoelektrycznych, jako dodatek stopowy (w ilości 2%), do „czerwonych” elektrod wolframowych stosowanych w metodzie spawania TIG. Tlenek toru znalazł zastosowanie w wysokogatunkowych soczewkach, dawniej z dodatkiem 1% dwutlenku ceru stosowany był w koszulkach Auera stanowiących źródło światła w latarniach gazowych oraz domowych i turystycznych lampach gazowych. Obecnie z uwagi na promieniotwórczość zastąpiony nieradioaktywnymi związkami cyrkonu i itru.

Tor, podobnie jak uran i pluton, może być używany jako paliwo w reaktorach jądrowych (np. reaktor torowy na ciekłych fluorkach). Jest potencjalnym kandydatem na paliwo jądrowe przyszłości, lepszym niż powszechnie stosowany uran.[3] Jego zalety to:

  • w przeciwieństwie do cyklu uranowego, gdzie 98% paliwa nie ulega zużyciu (i tworzy kłopotliwe odpady radioaktywne), tor w niektórych typach reaktorów może zostać zużyty w całości, co eliminuje problem odpadów[potrzebny przypis];
  • reaktor oparty na torze może z powodzeniem wykorzystywać odpady radioaktywne z tradycyjnych elektrowni uranowych;
  • produktem reaktora torowego jest 233
    U
    (powstający z 232
    Th
    w wyniku wychwytu neutronu i dwóch emisji β), izotop praktycznie nienadający się, w odróżnieniu od plutonu, do konstruowania broni atomowej.

Stan wzbudzony jądra toru-229 (tj. proces 229
Th → 229m
Th
) ma zakres energii kilku elektronowoltów (8 eV), wartość nietypową dla wzbudzonych jąder, choć zwyczajną dla elektronów w powłoce walencyjnej. Pozwala to na zastosowanie jego jonów w optyce oraz do budowy precyzyjnego zegara jądrowego[11][12].

Tlenek toru ma zastosowanie jako substrat reakcji jądrowych[3].

Uwagi

  1. Podana wartość stanowi przybliżoną standardową względną masę atomową (ang. abridged standard atomic weight) publikowaną wraz ze standardową względną masą atomową, która wynosi 232,0377 ± 0,0004 (patrz: publikacja w otwartym dostępie – możesz ją przeczytać Thomas Prohaska i inni, Standard atomic weights of the elements 2021 (IUPAC Technical Report), „Pure and Applied Chemistry”, 94 (5), 2021, s. 573–600, DOI: 10.1515/pac-2019-0603 (ang.)). Znane są próbki geologiczne, w których pierwiastek ten ma skład izotopowy odbiegający od występującego w większości źródeł naturalnych. Masa atomowa pierwiastka w tych próbkach może więc różnić się od podanej w stopniu większym niż wskazana niepewność (patrz: publikacja w otwartym dostępie – możesz ją przeczytać Thomas Prohaska i inni, Standard atomic weights of the elements 2021 (IUPAC Technical Report), „Pure and Applied Chemistry”, 94 (5), 2021, s. 573–600, DOI: 10.1515/pac-2019-0603 (ang.)).

Przypisy

  1. a b David R.D.R. Lide David R.D.R. (red.), CRC Handbook of Chemistry and Physics, wyd. 90, Boca Raton: CRC Press, 2009, s. 4-36, ISBN 978-1-4200-9084-0  (ang.).
  2. ThomasT. Prohaska ThomasT. i inni, Standard atomic weights of the elements 2021 (IUPAC Technical Report), „Pure and Applied Chemistry”, 94 (5), 2021, s. 573–600, DOI: 10.1515/pac-2019-0603  (ang.).
  3. a b c U.S. Department of Energy – Office of Scientific and Technical Information Thorium dioxide: properties and nuclear applications [1].
  4. Encyklopedia Techniki. Chemia 1965 ↓, radioaktyn, s. 599.
  5. Encyklopedia Techniki. Chemia 1965 ↓, radiotor, s. 600.
  6. Encyklopedia Techniki. Chemia 1965 ↓, jon, s. 300–301.
  7. Encyklopedia Techniki. Chemia 1965 ↓, uran Y, s. 745.
  8. Encyklopedia Techniki. Chemia 1965 ↓, uran X₁, s. 745.
  9. George B.G.B. Kauffman George B.G.B., The atomic weight of lead of radioactive origin: A confirmation of the concept of isotopy and the group displacement laws. Part I, „Journal of Chemical Education”, 59 (1), 1982, s. 3–8, DOI: 10.1021/ed059p3  (ang.).
  10. Robert E.R.E. Krebs Robert E.R.E., The History and Use of Our Earth’s Chemical Elements: A Reference Guide, Greenwood Publishing Group, 2006, ISBN 978-0-313-33438-2 [dostęp 2017-07-19]  (ang.).
  11. JohannesJ. Thielking JohannesJ. i inni, Laser spectroscopic characterization of the nuclear-clock isomer 229mTh, „Nature”, 556 (7701), 2018, s. 321–325, DOI: 10.1038/s41586-018-0011-8  (ang.).
  12. Nuclear clocks based on resonant excitation of γ-transitions, „Comptes Rendus Physique”, 16 (5), 2015, s. 516–523, DOI: 10.1016/j.crhy.2015.02.007  (ang.).

Bibliografia

  • Jerzy Minczewski, Zygmunt Marczenko: Chemia analityczna – 1 Podstawy teoretyczne i analiza jakościowa. Warszawa: PWN, 2001. ISBN 83-01-13499-2. OCLC 749313943. (pol.).
  • Encyklopedia techniki. Chemia, WładysławW. Gajewski (red.), Warszawa: Wydawnictwa Naukowo-Techniczne, 1965, OCLC 33835352 .
p  d  e
Układ okresowy pierwiastków
1 2   3[i] 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 H   He
2 Li Be   B C N O F Ne
3 Na Mg   Al Si P S Cl Ar
4 K Ca   Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5 Rb Sr   Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6 Cs Ba   La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7 Fr Ra   Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
8 Uue Ubn  
  Ubu Ubb Ubt Ubq Ubp Ubh Ubs ...[ii]  
Metale alkaliczne Metale ziem
alkalicznych
Lantanowce Aktynowce Metale przejściowe Metale Półmetale Niemetale Halogeny Gazy szlachetne Właściwości
nieznane
  1. Alternatywnie do skandowców zalicza się często nie lutet i lorens, lecz lantan, aktyn oraz hipotetyczny unbiun.
  2. Budowa 8. okresu jest przedmiotem badań teoretycznych i dokładne umiejscowienie pierwiastków tego okresu w ramach układu okresowego jest niepewne.
Kontrola autorytatywna (pierwiastek chemiczny):
  • LCCN: sh85134957
  • GND: 4185331-3
  • NDL: 00573342
  • BnF: 11977429t
  • BNCF: 37628
  • NKC: ph543054
  • J9U: 987007534013905171
Encyklopedia internetowa:
  • Britannica: science/thorium
  • Treccani: torio
  • Universalis: thorium
  • SNL: thorium
  • Catalana: 0239406, 0146927
  • DSDE: thorium