Traced monoidal category

In category theory, a traced monoidal category is a category with some extra structure which gives a reasonable notion of feedback.

A traced symmetric monoidal category is a symmetric monoidal category C together with a family of functions

T r X , Y U : C ( X U , Y U ) C ( X , Y ) {\displaystyle \mathrm {Tr} _{X,Y}^{U}:\mathbf {C} (X\otimes U,Y\otimes U)\to \mathbf {C} (X,Y)}

called a trace, satisfying the following conditions:

  • naturality in X {\displaystyle X} : for every f : X U Y U {\displaystyle f:X\otimes U\to Y\otimes U} and g : X X {\displaystyle g:X'\to X} ,
T r X , Y U ( f ( g i d U ) ) = T r X , Y U ( f ) g {\displaystyle \mathrm {Tr} _{X',Y}^{U}(f\circ (g\otimes \mathrm {id} _{U}))=\mathrm {Tr} _{X,Y}^{U}(f)\circ g}
Naturality in X
  • naturality in Y {\displaystyle Y} : for every f : X U Y U {\displaystyle f:X\otimes U\to Y\otimes U} and g : Y Y {\displaystyle g:Y\to Y'} ,
T r X , Y U ( ( g i d U ) f ) = g T r X , Y U ( f ) {\displaystyle \mathrm {Tr} _{X,Y'}^{U}((g\otimes \mathrm {id} _{U})\circ f)=g\circ \mathrm {Tr} _{X,Y}^{U}(f)}
Naturality in Y
  • dinaturality in U {\displaystyle U} : for every f : X U Y U {\displaystyle f:X\otimes U\to Y\otimes U'} and g : U U {\displaystyle g:U'\to U}
T r X , Y U ( ( i d Y g ) f ) = T r X , Y U ( f ( i d X g ) ) {\displaystyle \mathrm {Tr} _{X,Y}^{U}((\mathrm {id} _{Y}\otimes g)\circ f)=\mathrm {Tr} _{X,Y}^{U'}(f\circ (\mathrm {id} _{X}\otimes g))}
Dinaturality in U
  • vanishing I: for every f : X I Y I {\displaystyle f:X\otimes I\to Y\otimes I} , (with ρ X : X I X {\displaystyle \rho _{X}\colon X\otimes I\cong X} being the right unitor),
T r X , Y I ( f ) = ρ Y f ρ X 1 {\displaystyle \mathrm {Tr} _{X,Y}^{I}(f)=\rho _{Y}\circ f\circ \rho _{X}^{-1}}
Vanishing I
  • vanishing II: for every f : X U V Y U V {\displaystyle f:X\otimes U\otimes V\to Y\otimes U\otimes V}
T r X , Y U ( T r X U , Y U V ( f ) ) = T r X , Y U V ( f ) {\displaystyle \mathrm {Tr} _{X,Y}^{U}(\mathrm {Tr} _{X\otimes U,Y\otimes U}^{V}(f))=\mathrm {Tr} _{X,Y}^{U\otimes V}(f)}
Vanishing II
  • superposing: for every f : X U Y U {\displaystyle f:X\otimes U\to Y\otimes U} and g : W Z {\displaystyle g:W\to Z} ,
g T r X , Y U ( f ) = T r W X , Z Y U ( g f ) {\displaystyle g\otimes \mathrm {Tr} _{X,Y}^{U}(f)=\mathrm {Tr} _{W\otimes X,Z\otimes Y}^{U}(g\otimes f)}
Superposing
  • yanking:
T r X , X X ( γ X , X ) = i d X {\displaystyle \mathrm {Tr} _{X,X}^{X}(\gamma _{X,X})=\mathrm {id} _{X}}

(where γ {\displaystyle \gamma } is the symmetry of the monoidal category).

Yanking

Properties

  • Every compact closed category admits a trace.
  • Given a traced monoidal category C, the Int construction generates the free (in some bicategorical sense) compact closure Int(C) of C.

References

  • Joyal, André; Street, Ross; Verity, Dominic (1996). "Traced monoidal categories". Mathematical Proceedings of the Cambridge Philosophical Society. 119 (3): 447–468. Bibcode:1996MPCPS.119..447J. doi:10.1017/S0305004100074338. S2CID 50511333.
  • v
  • t
  • e
Category theory
Key concepts
Key concepts
  • Category
    • Abelian
    • Additive
    • Concrete
    • Pre-abelian
    • Preadditive
    • Bicategory
  • Adjoint functors
  • CCC
  • Commutative diagram
  • End
  • Exponential
  • Functor
  • Kan extension
  • Morphism
  • Natural transformation
  • Universal property
Universal constructions
Limits
Colimits
Algebraic categories
Constructions on categories
A simple triangular commutative diagram
Key concepts
n-categories
Weak n-categories
Strict n-categories
Categorified concepts
Stub icon

This category theory-related article is a stub. You can help Wikipedia by expanding it.

  • v
  • t
  • e