Total relation

Type of logical relation

In mathematics, a binary relation RX×Y between two sets X and Y is total (or left total) if the source set X equals the domain {x : there is a y with xRy }. Conversely, R is called right total if Y equals the range {y : there is an x with xRy }.

When f: XY is a function, the domain of f is all of X, hence f is a total relation. On the other hand, if f is a partial function, then the domain may be a proper subset of X, in which case f is not a total relation.

"A binary relation is said to be total with respect to a universe of discourse just in case everything in that universe of discourse stands in that relation to something else."[1]

Algebraic characterization

Total relations can be characterized algebraically by equalities and inequalities involving compositions of relations. To this end, let X , Y {\displaystyle X,Y} be two sets, and let R X × Y . {\displaystyle R\subseteq X\times Y.} For any two sets A , B , {\displaystyle A,B,} let L A , B = A × B {\displaystyle L_{A,B}=A\times B} be the universal relation between A {\displaystyle A} and B , {\displaystyle B,} and let I A = { ( a , a ) : a A } {\displaystyle I_{A}=\{(a,a):a\in A\}} be the identity relation on A . {\displaystyle A.} We use the notation R {\displaystyle R^{\top }} for the converse relation of R . {\displaystyle R.}

  • R {\displaystyle R} is total iff for any set W {\displaystyle W} and any S W × X , {\displaystyle S\subseteq W\times X,} S {\displaystyle S\neq \emptyset } implies S R . {\displaystyle SR\neq \emptyset .} [2]: 54 
  • R {\displaystyle R} is total iff I X R R . {\displaystyle I_{X}\subseteq RR^{\top }.} [2]: 54 
  • If R {\displaystyle R} is total, then L X , Y = R L Y , Y . {\displaystyle L_{X,Y}=RL_{Y,Y}.} The converse is true if Y . {\displaystyle Y\neq \emptyset .} [note 1]
  • If R {\displaystyle R} is total, then R L Y , Y ¯ = . {\displaystyle {\overline {RL_{Y,Y}}}=\emptyset .} The converse is true if Y . {\displaystyle Y\neq \emptyset .} [note 2][2]: 63 
  • If R {\displaystyle R} is total, then R ¯ R I Y ¯ . {\displaystyle {\overline {R}}\subseteq R{\overline {I_{Y}}}.} The converse is true if Y . {\displaystyle Y\neq \emptyset .} [2]: 54 [3]
  • More generally, if R {\displaystyle R} is total, then for any set Z {\displaystyle Z} and any S Y × Z , {\displaystyle S\subseteq Y\times Z,} R S ¯ R S ¯ . {\displaystyle {\overline {RS}}\subseteq R{\overline {S}}.} The converse is true if Y . {\displaystyle Y\neq \emptyset .} [note 3][2]: 57 

See also

  • Serial relation — a total homogeneous relation

Notes

  1. ^ If Y = X , {\displaystyle Y=\emptyset \neq X,} then R {\displaystyle R} will be not total.
  2. ^ Observe R L Y , Y ¯ = R L Y , Y = L X , Y , {\displaystyle {\overline {RL_{Y,Y}}}=\emptyset \Leftrightarrow RL_{Y,Y}=L_{X,Y},} and apply the previous bullet.
  3. ^ Take Z = Y , S = I Y {\displaystyle Z=Y,S=I_{Y}} and appeal to the previous bullet.

References

  1. ^ Functions from Carnegie Mellon University
  2. ^ a b c d e Schmidt, Gunther; Ströhlein, Thomas (6 December 2012). Relations and Graphs: Discrete Mathematics for Computer Scientists. Springer Science & Business Media. ISBN 978-3-642-77968-8.
  3. ^ Gunther Schmidt (2011). Relational Mathematics. Cambridge University Press. doi:10.1017/CBO9780511778810. ISBN 9780511778810. Definition 5.8, page 57.
  • Gunther Schmidt & Michael Winter (2018) Relational Topology
  • C. Brink, W. Kahl, and G. Schmidt (1997) Relational Methods in Computer Science, Advances in Computer Science, page 5, ISBN 3-211-82971-7
  • Gunther Schmidt & Thomas Strohlein (2012)[1987] Relations and Graphs, p. 54, at Google Books
  • Gunther Schmidt (2011) Relational Mathematics, p. 57, at Google Books
  • v
  • t
  • e
Order theory
Key concepts
ResultsProperties & Types (list)ConstructionsTopology & OrdersRelated