Littlewood subordination theorem

In mathematics, the Littlewood subordination theorem, proved by J. E. Littlewood in 1925, is a theorem in operator theory and complex analysis. It states that any holomorphic univalent self-mapping of the unit disk in the complex numbers that fixes 0 induces a contractive composition operator on various function spaces of holomorphic functions on the disk. These spaces include the Hardy spaces, the Bergman spaces and Dirichlet space.

Subordination theorem

Let h be a holomorphic univalent mapping of the unit disk D into itself such that h(0) = 0. Then the composition operator Ch defined on holomorphic functions f on D by

C h ( f ) = f h {\displaystyle C_{h}(f)=f\circ h}

defines a linear operator with operator norm less than 1 on the Hardy spaces H p ( D ) {\displaystyle H^{p}(D)} , the Bergman spaces A p ( D ) {\displaystyle A^{p}(D)} . (1 ≤ p < ∞) and the Dirichlet space D ( D ) {\displaystyle {\mathcal {D}}(D)} .

The norms on these spaces are defined by:

f H p p = sup r 1 2 π 0 2 π | f ( r e i θ ) | p d θ {\displaystyle \|f\|_{H^{p}}^{p}=\sup _{r}{1 \over 2\pi }\int _{0}^{2\pi }|f(re^{i\theta })|^{p}\,d\theta }
f A p p = 1 π D | f ( z ) | p d x d y {\displaystyle \|f\|_{A^{p}}^{p}={1 \over \pi }\iint _{D}|f(z)|^{p}\,dx\,dy}
f D 2 = 1 π D | f ( z ) | 2 d x d y = 1 4 π D | x f | 2 + | y f | 2 d x d y {\displaystyle \|f\|_{\mathcal {D}}^{2}={1 \over \pi }\iint _{D}|f^{\prime }(z)|^{2}\,dx\,dy={1 \over 4\pi }\iint _{D}|\partial _{x}f|^{2}+|\partial _{y}f|^{2}\,dx\,dy}

Littlewood's inequalities

Let f be a holomorphic function on the unit disk D and let h be a holomorphic univalent mapping of D into itself with h(0) = 0. Then if 0 < r < 1 and 1 ≤ p < ∞

0 2 π | f ( h ( r e i θ ) ) | p d θ 0 2 π | f ( r e i θ ) | p d θ . {\displaystyle \int _{0}^{2\pi }|f(h(re^{i\theta }))|^{p}\,d\theta \leq \int _{0}^{2\pi }|f(re^{i\theta })|^{p}\,d\theta .}

This inequality also holds for 0 < p < 1, although in this case there is no operator interpretation.

Proofs

Case p = 2

To prove the result for H2 it suffices to show that for f a polynomial[1]

C h f 2 f 2 , {\displaystyle \displaystyle {\|C_{h}f\|^{2}\leq \|f\|^{2},}}

Let U be the unilateral shift defined by

U f ( z ) = z f ( z ) . {\displaystyle \displaystyle {Uf(z)=zf(z)}.}

This has adjoint U* given by

U f ( z ) = f ( z ) f ( 0 ) z . {\displaystyle U^{*}f(z)={f(z)-f(0) \over z}.}

Since f(0) = a0, this gives

f = a 0 + z U f {\displaystyle f=a_{0}+zU^{*}f}

and hence

C h f = a 0 + h C h U f . {\displaystyle C_{h}f=a_{0}+hC_{h}U^{*}f.}

Thus

C h f 2 = | a 0 | 2 + h C h U f 2 | a 0 2 | + C h U f 2 . {\displaystyle \|C_{h}f\|^{2}=|a_{0}|^{2}+\|hC_{h}U^{*}f\|^{2}\leq |a_{0}^{2}|+\|C_{h}U^{*}f\|^{2}.}

Since U*f has degree less than f, it follows by induction that

C h U f 2 U f 2 = f 2 | a 0 | 2 , {\displaystyle \|C_{h}U^{*}f\|^{2}\leq \|U^{*}f\|^{2}=\|f\|^{2}-|a_{0}|^{2},}

and hence

C h f 2 f 2 . {\displaystyle \|C_{h}f\|^{2}\leq \|f\|^{2}.}

The same method of proof works for A2 and D . {\displaystyle {\mathcal {D}}.}

General Hardy spaces

If f is in Hardy space Hp, then it has a factorization[2]

f ( z ) = f i ( z ) f o ( z ) {\displaystyle f(z)=f_{i}(z)f_{o}(z)}

with fi an inner function and fo an outer function.

Then

C h f H p ( C h f i ) ( C h f o ) H p C h f o H p C h f o p / 2 H 2 2 / p f H p . {\displaystyle \|C_{h}f\|_{H^{p}}\leq \|(C_{h}f_{i})(C_{h}f_{o})\|_{H^{p}}\leq \|C_{h}f_{o}\|_{H^{p}}\leq \|C_{h}f_{o}^{p/2}\|_{H^{2}}^{2/p}\leq \|f\|_{H^{p}}.}

Inequalities

Taking 0 < r < 1, Littlewood's inequalities follow by applying the Hardy space inequalities to the function

f r ( z ) = f ( r z ) . {\displaystyle f_{r}(z)=f(rz).}

The inequalities can also be deduced, following Riesz (1925), using subharmonic functions.[3][4] The inequaties in turn immediately imply the subordination theorem for general Bergman spaces.

Notes

  1. ^ Nikolski 2002, pp. 56–57
  2. ^ Nikolski 2002, p. 57
  3. ^ Duren 1970
  4. ^ Shapiro 1993, p. 19

References

  • Duren, P. L. (1970), Theory of H p spaces, Pure and Applied Mathematics, vol. 38, Academic Press
  • Littlewood, J. E. (1925), "On inequalities in the theory of functions", Proc. London Math. Soc., 23: 481–519, doi:10.1112/plms/s2-23.1.481
  • Nikolski, N. K. (2002), Operators, functions, and systems: an easy reading. Vol. 1. Hardy, Hankel, and Toeplitz, Mathematical Surveys and Monographs, vol. 92, American Mathematical Society, ISBN 0-8218-1083-9
  • Riesz, F. (1925), "Sur une inégalite de M. Littlewood dans la théorie des fonctions", Proc. London Math. Soc., 23: 36–39, doi:10.1112/plms/s2-23.1.1-s
  • Shapiro, J. H. (1993), Composition operators and classical function theory, Universitext: Tracts in Mathematics, Springer-Verlag, ISBN 0-387-94067-7