List of mathematic operators

In mathematics, an operator or transform is a function from one space of functions to another. Operators occur commonly in engineering, physics and mathematics. Many are integral operators and differential operators.

In the following L is an operator

L : F G {\displaystyle L:{\mathcal {F}}\to {\mathcal {G}}}

which takes a function y F {\displaystyle y\in {\mathcal {F}}} to another function L [ y ] G {\displaystyle L[y]\in {\mathcal {G}}} . Here, F {\displaystyle {\mathcal {F}}} and G {\displaystyle {\mathcal {G}}} are some unspecified function spaces, such as Hardy space, Lp space, Sobolev space, or, more vaguely, the space of holomorphic functions.

Expression Curve
definition
Variables Description
Linear transformations
L [ y ] = y ( n ) {\displaystyle L[y]=y^{(n)}} Derivative of nth order
L [ y ] = a t y d t {\displaystyle L[y]=\int _{a}^{t}y\,dt} Cartesian y = y ( x ) {\displaystyle y=y(x)}
x = t {\displaystyle x=t}
Integral, area
L [ y ] = y f {\displaystyle L[y]=y\circ f} Composition operator
L [ y ] = y t + y t 2 {\displaystyle L[y]={\frac {y\circ t+y\circ -t}{2}}} Even component
L [ y ] = y t y t 2 {\displaystyle L[y]={\frac {y\circ t-y\circ -t}{2}}} Odd component
L [ y ] = y ( t + 1 ) y t = Δ y {\displaystyle L[y]=y\circ (t+1)-y\circ t=\Delta y} Difference operator
L [ y ] = y ( t ) y ( t 1 ) = y {\displaystyle L[y]=y\circ (t)-y\circ (t-1)=\nabla y} Backward difference (Nabla operator)
L [ y ] = y = Δ 1 y {\displaystyle L[y]=\sum y=\Delta ^{-1}y} Indefinite sum operator (inverse operator of difference)
L [ y ] = ( p y ) + q y {\displaystyle L[y]=-(py')'+qy} Sturm–Liouville operator
Non-linear transformations
F [ y ] = y [ 1 ] {\displaystyle F[y]=y^{[-1]}} Inverse function
F [ y ] = t y [ 1 ] y y [ 1 ] {\displaystyle F[y]=t\,y'^{[-1]}-y\circ y'^{[-1]}} Legendre transformation
F [ y ] = f y {\displaystyle F[y]=f\circ y} Left composition
F [ y ] = y {\displaystyle F[y]=\prod y} Indefinite product
F [ y ] = y y {\displaystyle F[y]={\frac {y'}{y}}} Logarithmic derivative
F [ y ] = t y y {\displaystyle F[y]={\frac {ty'}{y}}} Elasticity
F [ y ] = y y 3 2 ( y y ) 2 {\displaystyle F[y]={y''' \over y'}-{3 \over 2}\left({y'' \over y'}\right)^{2}} Schwarzian derivative
F [ y ] = a t | y | d t {\displaystyle F[y]=\int _{a}^{t}|y'|\,dt} Total variation
F [ y ] = 1 t a a t y d t {\displaystyle F[y]={\frac {1}{t-a}}\int _{a}^{t}y\,dt} Arithmetic mean
F [ y ] = exp ( 1 t a a t ln y d t ) {\displaystyle F[y]=\exp \left({\frac {1}{t-a}}\int _{a}^{t}\ln y\,dt\right)} Geometric mean
F [ y ] = y y {\displaystyle F[y]=-{\frac {y}{y'}}} Cartesian y = y ( x ) {\displaystyle y=y(x)}
x = t {\displaystyle x=t}
Subtangent
F [ x , y ] = y x y {\displaystyle F[x,y]=-{\frac {yx'}{y'}}} Parametric
Cartesian
x = x ( t ) {\displaystyle x=x(t)}
y = y ( t ) {\displaystyle y=y(t)}
F [ r ] = r 2 r {\displaystyle F[r]=-{\frac {r^{2}}{r'}}} Polar r = r ( ϕ ) {\displaystyle r=r(\phi )}
ϕ = t {\displaystyle \phi =t}
F [ r ] = 1 2 a t r 2 d t {\displaystyle F[r]={\frac {1}{2}}\int _{a}^{t}r^{2}dt} Polar r = r ( ϕ ) {\displaystyle r=r(\phi )}
ϕ = t {\displaystyle \phi =t}
Sector area
F [ y ] = a t 1 + y 2 d t {\displaystyle F[y]=\int _{a}^{t}{\sqrt {1+y'^{2}}}\,dt} Cartesian y = y ( x ) {\displaystyle y=y(x)}
x = t {\displaystyle x=t}
Arc length
F [ x , y ] = a t x 2 + y 2 d t {\displaystyle F[x,y]=\int _{a}^{t}{\sqrt {x'^{2}+y'^{2}}}\,dt} Parametric
Cartesian
x = x ( t ) {\displaystyle x=x(t)}
y = y ( t ) {\displaystyle y=y(t)}
F [ r ] = a t r 2 + r 2 d t {\displaystyle F[r]=\int _{a}^{t}{\sqrt {r^{2}+r'^{2}}}\,dt} Polar r = r ( ϕ ) {\displaystyle r=r(\phi )}
ϕ = t {\displaystyle \phi =t}
F [ y ] = a t y 3 d t {\displaystyle F[y]=\int _{a}^{t}{\sqrt[{3}]{y''}}\,dt} Cartesian y = y ( x ) {\displaystyle y=y(x)}
x = t {\displaystyle x=t}
Affine arc length
F [ x , y ] = a t x y x y 3 d t {\displaystyle F[x,y]=\int _{a}^{t}{\sqrt[{3}]{x'y''-x''y'}}\,dt} Parametric
Cartesian
x = x ( t ) {\displaystyle x=x(t)}
y = y ( t ) {\displaystyle y=y(t)}
F [ x , y , z ] = a t z ( x y y x ) + z ( x y x y ) + z ( x y x y ) 3 d t {\displaystyle F[x,y,z]=\int _{a}^{t}{\sqrt[{3}]{z'''(x'y''-y'x'')+z''(x'''y'-x'y''')+z'(x''y'''-x'''y'')}}dt} Parametric
Cartesian
x = x ( t ) {\displaystyle x=x(t)}
y = y ( t ) {\displaystyle y=y(t)}
z = z ( t ) {\displaystyle z=z(t)}
F [ y ] = y ( 1 + y 2 ) 3 / 2 {\displaystyle F[y]={\frac {y''}{(1+y'^{2})^{3/2}}}} Cartesian y = y ( x ) {\displaystyle y=y(x)}
x = t {\displaystyle x=t}
Curvature
F [ x , y ] = x y y x ( x 2 + y 2 ) 3 / 2 {\displaystyle F[x,y]={\frac {x'y''-y'x''}{(x'^{2}+y'^{2})^{3/2}}}} Parametric
Cartesian
x = x ( t ) {\displaystyle x=x(t)}
y = y ( t ) {\displaystyle y=y(t)}
F [ r ] = r 2 + 2 r 2 r r ( r 2 + r 2 ) 3 / 2 {\displaystyle F[r]={\frac {r^{2}+2r'^{2}-rr''}{(r^{2}+r'^{2})^{3/2}}}} Polar r = r ( ϕ ) {\displaystyle r=r(\phi )}
ϕ = t {\displaystyle \phi =t}
F [ x , y , z ] = ( z y z y ) 2 + ( x z z x ) 2 + ( y x x y ) 2 ( x 2 + y 2 + z 2 ) 3 / 2 {\displaystyle F[x,y,z]={\frac {\sqrt {(z''y'-z'y'')^{2}+(x''z'-z''x')^{2}+(y''x'-x''y')^{2}}}{(x'^{2}+y'^{2}+z'^{2})^{3/2}}}} Parametric
Cartesian
x = x ( t ) {\displaystyle x=x(t)}
y = y ( t ) {\displaystyle y=y(t)}
z = z ( t ) {\displaystyle z=z(t)}
F [ y ] = 1 3 y ( y ) 5 / 3 5 9 y 2 ( y ) 8 / 3 {\displaystyle F[y]={\frac {1}{3}}{\frac {y''''}{(y'')^{5/3}}}-{\frac {5}{9}}{\frac {y'''^{2}}{(y'')^{8/3}}}} Cartesian y = y ( x ) {\displaystyle y=y(x)}
x = t {\displaystyle x=t}
Affine curvature
F [ x , y ] = x y x y ( x y x y ) 5 / 3 1 2 [ 1 ( x y x y ) 2 / 3 ] {\displaystyle F[x,y]={\frac {x''y'''-x'''y''}{(x'y''-x''y')^{5/3}}}-{\frac {1}{2}}\left[{\frac {1}{(x'y''-x''y')^{2/3}}}\right]''} Parametric
Cartesian
x = x ( t ) {\displaystyle x=x(t)}
y = y ( t ) {\displaystyle y=y(t)}
F [ x , y , z ] = z ( x y y x ) + z ( x y x y ) + z ( x y x y ) ( x 2 + y 2 + z 2 ) ( x 2 + y 2 + z 2 ) {\displaystyle F[x,y,z]={\frac {z'''(x'y''-y'x'')+z''(x'''y'-x'y''')+z'(x''y'''-x'''y'')}{(x'^{2}+y'^{2}+z'^{2})(x''^{2}+y''^{2}+z''^{2})}}} Parametric
Cartesian
x = x ( t ) {\displaystyle x=x(t)}
y = y ( t ) {\displaystyle y=y(t)}
z = z ( t ) {\displaystyle z=z(t)}
Torsion of curves
X [ x , y ] = y y x x y {\displaystyle X[x,y]={\frac {y'}{yx'-xy'}}}

Y [ x , y ] = x x y y x {\displaystyle Y[x,y]={\frac {x'}{xy'-yx'}}}
Parametric
Cartesian
x = x ( t ) {\displaystyle x=x(t)}
y = y ( t ) {\displaystyle y=y(t)}
Dual curve
(tangent coordinates)
X [ x , y ] = x + a y x 2 + y 2 {\displaystyle X[x,y]=x+{\frac {ay'}{\sqrt {x'^{2}+y'^{2}}}}}

Y [ x , y ] = y a x x 2 + y 2 {\displaystyle Y[x,y]=y-{\frac {ax'}{\sqrt {x'^{2}+y'^{2}}}}}
Parametric
Cartesian
x = x ( t ) {\displaystyle x=x(t)}
y = y ( t ) {\displaystyle y=y(t)}
Parallel curve
X [ x , y ] = x + y x 2 + y 2 x y y x {\displaystyle X[x,y]=x+y'{\frac {x'^{2}+y'^{2}}{x''y'-y''x'}}}

Y [ x , y ] = y + x x 2 + y 2 y x x y {\displaystyle Y[x,y]=y+x'{\frac {x'^{2}+y'^{2}}{y''x'-x''y'}}}
Parametric
Cartesian
x = x ( t ) {\displaystyle x=x(t)}
y = y ( t ) {\displaystyle y=y(t)}
Evolute
F [ r ] = t ( r r [ 1 ] ) {\displaystyle F[r]=t(r'\circ r^{[-1]})} Intrinsic r = r ( s ) {\displaystyle r=r(s)}
s = t {\displaystyle s=t}
X [ x , y ] = x x a t x 2 + y 2 d t x 2 + y 2 {\displaystyle X[x,y]=x-{\frac {x'\int _{a}^{t}{\sqrt {x'^{2}+y'^{2}}}\,dt}{\sqrt {x'^{2}+y'^{2}}}}}

Y [ x , y ] = y y a t x 2 + y 2 d t x 2 + y 2 {\displaystyle Y[x,y]=y-{\frac {y'\int _{a}^{t}{\sqrt {x'^{2}+y'^{2}}}\,dt}{\sqrt {x'^{2}+y'^{2}}}}}
Parametric
Cartesian
x = x ( t ) {\displaystyle x=x(t)}
y = y ( t ) {\displaystyle y=y(t)}
Involute
X [ x , y ] = ( x y y x ) y x 2 + y 2 {\displaystyle X[x,y]={\frac {(xy'-yx')y'}{x'^{2}+y'^{2}}}}

Y [ x , y ] = ( y x x y ) x x 2 + y 2 {\displaystyle Y[x,y]={\frac {(yx'-xy')x'}{x'^{2}+y'^{2}}}}
Parametric
Cartesian
x = x ( t ) {\displaystyle x=x(t)}
y = y ( t ) {\displaystyle y=y(t)}
Pedal curve with pedal point (0;0)
X [ x , y ] = ( x 2 y 2 ) y + 2 x y x x y y x {\displaystyle X[x,y]={\frac {(x'^{2}-y'^{2})y'+2xyx'}{xy'-yx'}}}

Y [ x , y ] = ( x 2 y 2 ) x + 2 x y y x y y x {\displaystyle Y[x,y]={\frac {(x'^{2}-y'^{2})x'+2xyy'}{xy'-yx'}}}
Parametric
Cartesian
x = x ( t ) {\displaystyle x=x(t)}
y = y ( t ) {\displaystyle y=y(t)}
Negative pedal curve with pedal point (0;0)
X [ y ] = a t cos [ a t 1 y d t ] d t {\displaystyle X[y]=\int _{a}^{t}\cos \left[\int _{a}^{t}{\frac {1}{y}}\,dt\right]dt}

Y [ y ] = a t sin [ a t 1 y d t ] d t {\displaystyle Y[y]=\int _{a}^{t}\sin \left[\int _{a}^{t}{\frac {1}{y}}\,dt\right]dt}
Intrinsic y = r ( s ) {\displaystyle y=r(s)}
s = t {\displaystyle s=t}
Intrinsic to
Cartesian
transformation
Metric functionals
F [ y ] = y = E y 2 d t {\displaystyle F[y]=\|y\|={\sqrt {\int _{E}y^{2}\,dt}}} Norm
F [ x , y ] = E x y d t {\displaystyle F[x,y]=\int _{E}xy\,dt} Inner product
F [ x , y ] = arccos [ E x y d t E x 2 d t E y 2 d t ] {\displaystyle F[x,y]=\arccos \left[{\frac {\int _{E}xy\,dt}{{\sqrt {\int _{E}x^{2}\,dt}}{\sqrt {\int _{E}y^{2}\,dt}}}}\right]} Fubini–Study metric
(inner angle)
Distribution functionals
F [ x , y ] = x y = E x ( s ) y ( t s ) d s {\displaystyle F[x,y]=x*y=\int _{E}x(s)y(t-s)\,ds} Convolution
F [ y ] = E y ln y d t {\displaystyle F[y]=\int _{E}y\ln y\,dt} Differential entropy
F [ y ] = E y t d t {\displaystyle F[y]=\int _{E}yt\,dt} Expected value
F [ y ] = E ( t E y t d t ) 2 y d t {\displaystyle F[y]=\int _{E}\left(t-\int _{E}yt\,dt\right)^{2}y\,dt} Variance

See also