Liénard–Chipart criterion

Criterion on Control System Theory

In control system theory, the Liénard–Chipart criterion is a stability criterion modified from the Routh–Hurwitz stability criterion, proposed by A. Liénard and M. H. Chipart.[1] This criterion has a computational advantage over the Routh–Hurwitz criterion because it involves only about half the number of determinant computations.[2]

Algorithm

The Routh–Hurwitz stability criterion says that a necessary and sufficient condition for all the roots of the polynomial with real coefficients

f ( z ) = a 0 z n + a 1 z n 1 + + a n ( a 0 > 0 ) {\displaystyle f(z)=a_{0}z^{n}+a_{1}z^{n-1}+\cdots +a_{n}\,(a_{0}>0)}

to have negative real parts (i.e. f {\displaystyle f} is Hurwitz stable) is that

Δ 1 > 0 , Δ 2 > 0 , , Δ n > 0 , {\displaystyle \Delta _{1}>0,\,\Delta _{2}>0,\ldots ,\Delta _{n}>0,}

where Δ i {\displaystyle \Delta _{i}} is the i-th leading principal minor of the Hurwitz matrix associated with f {\displaystyle f} .

Using the same notation as above, the Liénard–Chipart criterion is that f {\displaystyle f} is Hurwitz stable if and only if any one of the four conditions is satisfied:

  1. a n > 0 , a n 2 > 0 , ; Δ 1 > 0 , Δ 3 > 0 , {\displaystyle a_{n}>0,a_{n-2}>0,\ldots ;\,\Delta _{1}>0,\Delta _{3}>0,\ldots }
  2. a n > 0 , a n 2 > 0 , ; Δ 2 > 0 , Δ 4 > 0 , {\displaystyle a_{n}>0,a_{n-2}>0,\ldots ;\,\Delta _{2}>0,\Delta _{4}>0,\ldots }
  3. a n > 0 , a n 1 > 0 , a n 3 > 0 , ; Δ 1 > 0 , Δ 3 > 0 , {\displaystyle a_{n}>0,a_{n-1}>0,a_{n-3}>0,\ldots ;\,\Delta _{1}>0,\Delta _{3}>0,\ldots }
  4. a n > 0 , a n 1 > 0 , a n 3 > 0 , ; Δ 2 > 0 , Δ 4 > 0 , {\displaystyle a_{n}>0,a_{n-1}>0,a_{n-3}>0,\ldots ;\,\Delta _{2}>0,\Delta _{4}>0,\ldots }

Hence one can see that by choosing one of these conditions, the number of determinants required to be evaluated is reduced.

Alternatively Fuller formulated this as follows for (noticing that Δ 1 > 0 {\displaystyle \Delta _{1}>0} is never needed to be checked):

a n > 0 , a 1 > 0 , a 3 > 0 , a 5 > 0 , ; {\displaystyle a_{n}>0,a_{1}>0,a_{3}>0,a_{5}>0,\ldots ;}

Δ n 1 > 0 , Δ n 3 > 0 , Δ n 5 > 0 , , { Δ 3 > 0   ( n   e v e n ) Δ 2 > 0   ( n   o d d ) } . {\displaystyle \Delta _{n-1}>0,\Delta _{n-3}>0,\Delta _{n-5}>0,\ldots ,\{\Delta _{3}>0\ (n\ even)\,\Delta _{2}>0\ (n\ odd)\}.}

This means if n is even, the second line ends in Δ 3 > 0 {\displaystyle \Delta _{3}>0} and if n is odd, it ends in Δ 2 > 0 {\displaystyle \Delta _{2}>0} and so this is just 1. condition for odd n and 4. condition for even n from above. The first line always ends in a n {\displaystyle a_{n}} , but a n 1 > 0 {\displaystyle a_{n-1}>0} is also needed for even n.

References

  1. ^ Liénard, A.; Chipart, M. H. (1914). "Sur le signe de la partie réelle des racines d'une équation algébrique". J. Math. Pures Appl. 10 (6): 291–346.
  2. ^ Felix Gantmacher (2000). The Theory of Matrices. Vol. 2. American Mathematical Society. pp. 221–225. ISBN 0-8218-2664-6.

External links

  • "Liénard–Chipart criterion", Encyclopedia of Mathematics, EMS Press, 2001 [1994]


  • v
  • t
  • e